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ABSTRACT: 

Diagnostic imaging modalities are undergoing 

a paradigm shift in terms of technological 

advances and their impact on many aspects of 

healthcare. The introduction of machine 

learning and radiomic in data analysis with 

capabilities of creating new clinical models 

has recently caught the attention of clinicians 

and scientists. Radiomics is a high throughput 

technology able to derive many imaging 

features from the diagnostic data while 

machine learning is a computer science 

discipline able to provide new forms of 

“electronic observer” able to mimic human 

tasks performed by radiologists and nuclear 

medicine physicians in daily routine. These 

technologies could be used individually or in 

combination to facilitate as well as solving 

issues associated with initial patient diagnosis, 

image processing, data analysis, stratification, 

prognosis and management. In the last decade, 

there was a rapidly growing interest in using 

radiomic in nuclear medicine and molecular 

imaging providing several solutions in 

reducing the injected radio activities, reducing 

imaging time, lesion segmentation, diagnosis, 

and many other applications that could 

potentially serve or replace current practices. 

The goal of this part of the machine learning 

and radiomics in nuclear medicine series is to 

introduce the reader to these new technologies 

and open avenues on current status, potential 

and future promises.  
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INTRODUCTION:  

Nuclear medicine remains one of the most 

potential modalities in metabolic and 

molecular imaging 
(1)

. It has several 

quantitative capabilities that enable nuclear 

physicians and scientists to account for many 

biological and biochemical processes that 

occur during disease progression or regression. 

Lesion metabolic activity can be represented in 

different numerical forms in semi-quantitative 

or absolute quantitation. Recently, there is an 

increasing interest in deriving several texture 

features or statistical descriptors of the 

imaging data called radiomics in analogous to 

recent advances in the worlds of human 

genome “genomics”, protein structure and 

functions “proteomics”, biochemical 

metabolites “metabolomics” and other “omics” 

sciences 
(2-7)

.  Nuclear medicine was not an 

exception among imaging modalities in 

utilizing the power and application of 

radiomics in several malignancies. This type 

of data mining allows for deriving large 

amount of features that may account with 

variable extents on tumor heterogeneity 

providing not only phenotype-based 

characterization but also extended to comprise 

genotyping correlations 
(8)

.  

It is not only nuclear techniques that can be 

used in radiomic technology but also structural 

imaging modalities including x-ray computed 

tomography (CT) and magnetic resonance 

imaging (MRI), ultrasound and pathological 

specimens/images are employed 
(2, 9)

.  

The high throughput of these imaging features 

including data analysis and exploration to find 

out a relationship between pathology and 

imaging biomarkers was of particular interest 

among researchers. Precision medicine deals 

with optimizing individual patient 

management to reach the optimal decision 

making.  Radiomics data could to large extent 

fit this purpose as it reveals quite large 

quantitative information about every particular 

imaging session. 

However, the underlying statistical, physical 

and analytical methods need to be carefully 

reviewed in order to improve the clinical 

benefit as well as optimize research efforts. 

There are quite important steps that should be 

followed in order to successfully obtain 

meaningful results that can be correlated with 

patient physiologic or pathological status and 

generalize the model for better clinical 

decision making.  

 



 
Egyptian J. Nucl. Med., Vol. 22, No. 1, June 2021 

 

3 

 

 

This review and future releases will just place 

the reader on the essentials and milestones of 

the this rapidly growing field but was not 

meant to be extensive or exhaustive coverage 

of all recent approaches, methods and new 

developments. However, special focus will be 

placed on necessary parts and critical issues 

that face most researchers and investigators 

concerned with radiomics and radio genomics 

and their wide use applications.  

Figure (1): describes the logical flow of most 

radiomics studies beginning from data 

acquision, processing and segmentation, 

feature extraction, model development and 

validation.  

 

 

 

 

 

 

 

 

 

 

Figure (1): Radiomics workflow including several steps of image acquision, processing, 

segmentation, feature extraction, model development and validation. 
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Lesion segmentation:  

Initial steps that are normally taken to 

implement radiomics data analysis are to 

extract the lesion out of the surrounding organ 

or structures using region or volume of 

interest (ROI/VOI). It represents which part of 

the image that needs to be selected for further 

analysis. It can be segmented manually or 

(semi-) automatically 
(10)

. The process of 

tumor delineation can introduce undesired 

bias into data since segmentation methods 

vary widely and hence results are subject to 

fluctuations that might affect reproducibility 

and hence clinical model instability 
(10)

. 

Manual segmentation as recommend by 

experts in the filed should be avoided as it 

introduce variability with reduced agreement 

among observers. Threshold based methods 

seem to have also lower performance while 

semi-automated methods with threshold was 

found to offer higher reproducibility among 

different observers. The key point is how the 

segmentation is implemented and how is it 

sensitive and robust to radiomic analysis. A 

recent report has emphasized and argued the 

use of PET radiomics mainly due to impact of 

contouring variability on PET-based  

 

 

 
radiomics that hinder its translation among 

different institutions 
(11)

. 

Pixel/Voxel size: 

While pixel or voxel size is determined prior 

to image acquision or during image 

reconstruction based on system resolving 

capabilities, radiomics analysis was shown to 

be affected by selection of the pixel size and 

whether isotropic or not-isotropic. This has 

been widely investigated in CT dataset and 

was shown to impact reproducibility of some 

features 
(11)

. Normalizing those features to 

voxel size was shown to eliminate variability's 

among measurements. Two approaches are 

present to harmonize voxel size including 

image reconstruction and voxel interpolation. 

The former mightn’t be easy accessible as raw 

data in some instances are not available 

whereas the former introduce some 

information that could confound the results 
(10, 

12)
. Reconstruction was shown to reduce bias 

introduced in the PET images when 3D PET 

was compared to 4D PET data. It seems that 

there is room for further research on how and 

which voxel size is optimally selected in PET 

radiomics.  
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Intensity Discretization: 

The range of SUV values that may a particular 

patient has in one; two or more lesions may 

vary substantially in the intensity levels with 

sparsely of the lesion histogram. In order to 

standardize the analysis and feature matrix 

calculations, the use of intensity level 

discretization appeared to be an important step 

to maintain consistency of the results 
(13)

. The 

two most common methods of intensity 

discretization are the bin number and bin 

width. Both of the two approaches have their 

weaknesses and strengths. The former is 

employed when dividing the SUV range into 

equally spaced bins, where the intensity 

values (bin size) varies per image keeping a 

constant intensity values per resolution bin. 

This is collectively called discretization level 

parameter which was found to impact 

reliability of the measurements 
(13, 14)

. 

Processing software's: 

There are many software packages that are 

available to calculate radiomic feature for 

PET, SPECT, CT and MR Datasets. The 

variability among those codes would 

introduce another source of variation that was 

initially considered in the development of 

imaging biomarker standard initiative (IBSI) 

accounting for less than 25% taking into 

account standardization of the processing 

steps 
(12)

. This could be enhanced to get rid of 

the choice of which software program would 

be utilized as well as elimination of the inter-

variation among radiomics data analysis. 

Many software programs and codes along 

with their functionalities and features are 

described in the literature where some of them 

can be applied via internet online 
(15)

. 

Data generation and Phantom studies: 

Analyzing radiomic data obtained from more 

than one scanner might subject to inter-

scanner variations and thus a sort of removing 

the effect of particular system characteristics 

from the data is necessarily required to 

remove probable data bias. Phantom 

examinations have been extensively applied in 

medical imaging research but could be an 

acceptable alternative in determination of 

feature reproducibility, robustness, 

repeatability as well as stability 
(16)

. The above 

mentioned variations could also be assessed 

using phantom experiments. However, the 

biological relevance and variations induced by 

individual patient biological characteristics 

hinder from deducing or creating a successful 

or reliable clinical decision models.  
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Type of Features and Radiomics 

Descriptors: 

Morphological Descriptors. 

Morphological or shape-based descriptors 

serve to describe the geometric shape or 

surface of the region of interest such as 

diameters, eccentricity, short and long axis as 

well as surface and volume or their ratio. 

Other morphological features are compactness 

circularity, elongation, roughness, 

eccentricity, extent, solidity, and sphericity, 

convexity, aspect ratio. These features are 

generally easy to implement and has been 

used in several biomedical imaging data 

mining with recent development in 3D 

printing 
(16)

. 

Gradient based methods: 

The gray level transition from voxel to 

another could be a useful measure of tumor 

heterogeneity such as an abrupt change from 

black to white or the reverse 
(6)

.  

This could be used as an indication or 

statistical descriptors to differentiate among 

tumor phenotypes. It might include gradient 

mean, gradient variance, kurtosis and 

skewness. Skewness is a measure of the 

histogram symmetry while kurtosis is a 

measure of the peak-endless of the histogram 

intensity curve.  

 

First order: Histogram Features. 

Histogram based features extract relies on a 

global measure of lesion gray level intensity 

including minimum, maximum, mean, 

standard deviation, percentiles, variance and 

others. The conventional PET metrics that 

normally used in the clinic also belong to this 

first order features that include SUV max, 

SUV mean, SUV peak. However, there are 

other measures such as mean, maximum, 

median, variance, histogram entropy and 

uniformity/energy that might be of particular 

interest.  

Gray-Level Co-occurrence Matrix: 

(GLCM). 

Gray-level co-occurrence matrix looks at the 

spatial arrangement of each pair of voxels 

with prior definition of their intensity levels 

including different directions and can be 

applied to 2D as well as 3D datasets 
(17)

. The 

former can be measured in horizontal, vertical 

and diagonal while a number of 13 directions 

can be applied to 3D data. Entropy is a GLCM 

member and describes the randomness or 

inhomogeneity of gray levels within a given 

region. Other metrics of this matrix include 

angular second moment and contrast. The 

angular second moment refers to intensity 

homogeneity while contrast deals with gray-

level differences between voxels or voxel pair.  
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Gray-Level Run-length Matrix (GLRLM): 

The GLRLM matrix cares with connected the 

spatial arrangements of connected voxels that 

run with the same level of intensity for 2 or 

more directions 
(5)

. In other words, the spatial 

distribution of pixel values is recorded by 

counting the lengths of consecutive runs that 

have the same intensity level.  The features of 

this matrix include short run emphasis, gray 

level and run-length non-uniformity, fraction 

and others. The fraction reflects the graininess 

as it accounts for percent of voxels that are 

part of the runs. The short and long run 

emphasis are weighted measure of the length 

of the runs being penalized by the length of 

the run. 

  
Gray-Level Size Zone Matrix (GLSZM):  

The GLSZM is similar to the GLRLM. 

However, it deals with connected voxels or 

number of groups (i.e. zones) having the same 

intensity values not necessarily for different 

directions. The voxels selected may be 

measured at distances that define 

neighborhood. The GLSZM computes 

intensity level zones in an image 
(6)

. The 

intensity or gray level zone is defined as the 

number of connected voxels that share the 

level of intensity.  

A voxel is considered connected if the 

distance is 1 according to the criteria of 26-

connected region in 3D or 8-connected region 

in 2D. Small Area Emphasis (SAE), Large 

Area Emphasis (LAE), and Gray Level Non-

Uniformity (GLN) are among the different 

measures of the GLSZM. 

Another similar matrix is the Gray-Level 

Distance Zone Matrix (GLDZM). It doesn’t 

only compute connected voxel zones with the 

same gray level but requires those voxels to 

be at the same distance from the ROI edge. 

The GLDZM is a combination between lesion 

morphology and texture features. The small 

distance high gray level emphasis is one of the 

features of the GLDZM.  

Neighborhood Gray-Tone Difference 

Matrix (NGTDM): 

The NGTDM matrices are higher order 

texture and serve to assess the variation 

between a voxel intensity value and the mean 

intensity level of the neighboring voxels 

within a certain distance 
(6)

. Some of the key 

features of the NGTDM matrix are 

complexity, coarseness, and busyness. 

Coarseness quantifies the rate of spatial 

change in intensity levels such that lower rate 

of intensity changes indicates greater 

coarseness.  
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Busyness feature is used to assess the rapid 

changes of the central voxel with respect to 

neighboring ones. High coarseness in a VOI 

reflects small areas with high fluctuating 

intensity of voxel values. In case of one voxel 

a matrix of 8 neighboring voxel is formed in 

an array of 3x3. The matrix then measures the 

sum of absolute difference that exists between 

the centered voxel and the neighboring ones 

(5)
. 

Neighborhood Gray-Level Dependence 

Matrix (NGLDM): 

As the name implies, the NGLDM matrix 

assess a central voxel with the respect with its 

neighboring voxels. The distance of the 

neighboring voxels is controlled through a 

predefined difference value (i.e. intensity 

values) between the central voxel and the 

neighboring voxels. It records the difference 

of grey-level between one voxel and its 26 

neighbors in 3 dimensions (8 in 2D). 

Similarly, as described in previous matrices, 

NGLDM_ coarseness is the level of spatial 

rate of change in intensity, NGLDM_ contrast 

is the intensity difference between 

neighboring regions and NGLDM_ 

busyness is the spatial frequency of changes in 

intensity 
(18)

. 

Issues of Radiomics data analysis: 

The field of radiomic and radio genomics was 

received with enthusiasm and potential but 

posed challenges and limitations that must be 

seriously tackled including limited datasets for 

evaluations (i.e. number of patients), feature 

selection, large features dimensions “curse of 

dimensionality”, and most importantly is 

standardization of the processing steps and 

harmonization among clinical centers.  

The use of artificial intelligence and more 

specifically deep learning was also an 

important element in texture feature extraction 

and development of computer assisted 

software program able to aid physicians in 

several tasks including lesion contouring, 

segmentation, diagnosis, prognosis and other 

clinically relevant tasks.  
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